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Abstrrt-A similarity transformation is used for solving the problem of mass transfer to a growing drop 
or bubble when not only the radial velocity component is taken into account (as in previous papers) but 
also the tangential velocity component. The method may be used either when the growth is due to the heat 

transfer itself or to the flow-rate of a liquid fed through a capillary. 

NOMENCLATURE 

radius of the drop ; 
constant defined by equation (13) ; 
constant defined by equation (13) ; 
concentration ; 
diffusion coefficient ; 
integration constant ; 
quantity defined by equation (6) ; 
liquid flow-rate through the capillary ; 
mass flux ; 
average mass flux with respect to 8; 
integration variable ; 
radial variable (spherical coordinate system) ; 
Reynolds number, = apU/p ; 
integration variable ; 
time ; 
da/dt ; 

radial component of velocity ; 
tangential component of velocity ; 

Y - a; 

integration constant ; 

PlIPi 
thickness of the diffusion boundary layer ; 
s2 ; 

Y/6(4 t) ; 
polar angle (spherical coordinate system) ; 
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quantity defined by equation (2) ; 
dynamic viscosity of the continuous phase ; 
dynamic viscosity of the discontinuous phase ; 
kinematic viscosity of the continuous phase ; 
the density of the continuous phase ; 
time ; 
quantity defined by equation (7) ; 
quantity defined by equation (8) ; 
constant selected equal to 2. 

THERE exist numerous cases in which the interfacial area increases or decreases either as a conse- 
quence of the heat and/or the mass transfer or during the transfer process. As examples, one may 
mention the heat transfer to a growing bubble in boiling heat transfer and the mass transfer to a 
drop in its forming period. In the first case the growth of the bubble is determined by the heat 
transfer itself, while in the second by the flow-rate of the liquid fed through the capillary at the tip 
of which the drop is formed. The first problem was treated by Forster and Zuber [ 11, by Plesset and 
Zwick [2] and by Striven [3]. The second by Ilkovic [4] and by Beek and Kramers [5]. The treat- 
ments mentioned have taken into account only the radial velocity component. Recently Golub and 
Krilov [6] have treated the problem of mass transfer in the continuous phase to a growing forming 
drop by taking into account the tangential velocity component too. They have solved the hydro- 
dynamic problem for small Reynolds numbers and have used a perturbation technique for solving 
the mass-transfer problem. The aim of the present paper is to show that the last problem and other 
similar problems may be solved by means of a method, developed in [7], based on a similarity 
transformation. Besides its simplicity, the method does not require that the tangential velocity 
component should be a small quantity as is required by the perturbation method. 

BASIC EQUATIONS 

Let us consider a growing drop which is formed at the tip of a capillary owing to the flow-rate m 
of the liquid. The time dependence of the drop radius results from the equation 

p-$$m.z”) = m. 

One obtains that 

a(t) = At’, (1) 

where 

(2) 

For the velocity components in the continuous phase the following expressions were obtained by 
Golub and Krflov for small Reynolds numbers by means of a perturbation technique [6] 

i 

a2 
u, = u f’(r, t) cos 8 + -- 

l-2 I 
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where 

ue = - U cp(r,t) sin8 

f= 2y 
3u(2 + 5/3)X2 

- $1 -48) + . . . 1 28~ 
- 

1542 + 3/3)X3 
$/I)+... 1 + . . . . 

1 

’ = 3(2 + 5/I)X2 
l+i(1+9j?)-$1~&!I)+... 1 

14 

+ 15(2 + 3/?)X3 
;(1+38)-$(l-ifi)+... + 1 

x = X’(v3t)* E (3Re)-+, 

Neglecting as usual a number of terms in the convective diffusion equation, one may write 

The change of variables 
y=r-a 

z=t 

allows to write equation (9) under the form 
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(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

The diffusion coefficient being small, the depth of penetration by diffusion is small too. The 
region of interest for the concentration being near the interface where y a Q one may approximate 
the velocity distribution by means of the expressions containing only the first term of the series 
expansion with respect to y/a. 

In this manner one obtains 

z+ $[(att + Bt@) cos 8 - t-11 ac - $&-+ 
ay + Bt@)sinB$ = De 

aY2 
(12) 

where 

A= 
1 

B= 
14 

3(2 + 5/3)A-2v: 15(2 + 3fl)A-“v* ’ 

Equation (12) must be solved for the boundary conditions : 

c = co for t = 0 

c = ci for y = 0 

c = co for y-, co. 

(13) 

(14) 
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THE SOLUTION OF EQUATION (12) 

Since the coefficient multipying &+?y is proportional to y, while that multiplying &/a0 is in- 
dependent on y it is possible to use the similarity variable rl [7] 

v = M::e). (15) 

The similarity variable q allows to transform equation (12) into 

La? - 3 [(At-* 
2 at 

+ Bt-qcose - t-y d2 -&It-* + 13t-qsindg (16) 

Equation (16) is compatible with the assumption that the concentration c depends only on q. 
Indeed, putting 

1 as2 2 

-_ - 

2 at 
*[(At-+ + Bt-3) cos 8 - t-‘1 6’ - &At-* + Bt-%) sin 0% = OD (17) 

where w is a proportionality constant, one obtains 

d2c 
,+ex&o. 
dq drl 

For the constant o the value 2 will be selected. 
The solution of equation (18) for the boundary conditions (14) has the form 

(18) 

(19) 

The thickness 6 of the diffusion boundary layer is obtained by solving equation (17) for the 
initial condition 

6=0 for t=O. (20) 

The initial condition (20) is a consequence of the initial condition c = c0 for t = 0. Indeed only 
if 6 = 0 for t = 0, equation (16) satisfies the mentioned initial condition. 

Denoting 

E = d2, (21) 
equation (17) may be written as 

a& 
- -*[(At-* + Bt-3) 
at 

cos 8 - t- ‘1 E - &lt-3 + lit-*) sin 0 $ = 40. (22) 

The characteristic system which may be attached to equation (22) may be written as : 

dc 3de de -=- 
1 sin fI((At-3 + Bt-3) = 40 + &K3 + Bt-*) cos 8 - t- ‘]e’ 

(23) 

From the first equation one obtains 

3 In tan 5 - 3At-* - 2Br-* = a. (24) 
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As the second equation it will be used (25) 

dt ds -= 
1 40 + $[(At-* + Bt-*)cos 8 - t-‘1 E’ 

Because 

c0Se= 

equation (24) allows to write 

cos 8 = 1 - exp($a + 2At-* + #t-*) 

1 + exp($z + 2At-* + $Bt-*) 

(25) 

(26) 

and equation (25) becomes 

1 - exp(sa + 2At-* + @t-*) _ t_l 

1 + exp ($a + 2A2-* + $3t -*) 1 E - 40 = 0. (27) 

by integration one obtains 

1 - exp(ja + 2As-* + $L?s-*) 
--s 

1 + exp($a + 2As-* + )Bs-*) 

The general solutions of equation (22) has the form 

E = F(a). 

The form of the function F may be determined by taking into account the initial condition (20). 
In this manner it results that 

and consequently that 

s=4D[(exp{-~/~-*+Ds-*) 
1 - tanZ(0/2) exp (-2At-* - @t-j + 2As-* + @3s-*) 

1 + tan2(B/2)exp(-2At-* - @t-* + 2As-* + @s-*) 

-S p. (29) 
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Performing the integrals from the exponent, one gets 

E = 4Dt-+ 
[l ,+ tan’ (8/2)14 

exp 2(At+ + $Bt-+) 

’ 
exp 2(2Ap-* + @p-*) dp 

‘+ { 1 + tan2 (e/2) exp [2A@+ - t-+) + @(p-+ - tWJ}4’ (30) 

The integral from equation (30) can be carried out probably only numerically. Since the equation 
used above for the velocity distribution are valid only for small values of the Reynolds number, 
and therefore for small values of the quantities A and B, we shall perform the integration by expan- 
sion in series of the integrand by means of a successive integration by parts. This procedure leads to 

E = 4Dt-+ 
[l + tan’ (0/2)14 3 

7 t 

+ exp 2(2At-+ + $BtC+) 

exp 2(2At-* + @3-*) [l + tan’ (8/2)14 
+ @At’ + #3t+) 

x[exp 2(2At-* + $Bt-fj[l - tan’ (e/2)] 16 3 

[l + tan’ (8/2)15 
+ 21 (mA2 tQ + +$A&+ + &B’t+) 

’ x [exp 2(2Atwf + $3-*)][ 1 - 3 tan’ (e/2) + tan4 (e/2)] 

[l + tan’ (0/2)16 
+ ; 

s 
(&A2p+ + %ABp’ + &B2p4) 

x (Ap-+ 
{ 1 - tan’ (d/2) exp [2A(p-* - t-*) + $B(p’* - twi)]} 

+ Bp-‘) (1 + tan2 (8/2)exp [2A(p-* - t-*) + $B(p-* - t-*)1) 

x 2 + 11 tan”iexp [2A(j-) - t-*) + $S(p-* - t-f)] 

+ 2tan4iexp2[2A(p-* - t-*) + &-f - t-3)] dp 
11 

(31) 

Neglecting the last integral as small compared to the other terms, one obtains 

& = yDt[l + $At-* COS 8 + &Bt-+ COS 8 - +A2t-*(+ - COS2 o) + . . .]. (32) 

Since 

one gets 

(33) 

For the average value of the mass flux in the continuous phase there results 

(35) 

The first term in equation (35) represents Ilkovic’s approximation, while the others represent 
correction to his result. The obtained equation is the same as the one obtained by Golub and 
Krilov, but was deduced here by means of a more simple method. Besides, the present procedure 
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may be used also when the contribution of the tangential velocity component is important (large 
Reynolds numbers), while the perturbation technique used by the mentioned authors is restricted 
to small values of the tangential velocity. Unfortunately for the time being no velocity distribution 
for a growing drop at large Reynolds number exists. 

It may be noted that the method may be extended to all cases in which the time dependence of 
the radius is known ; it may be also applied to the cases in which the growth of the bubble is de- 
termined by the heat transfer itself. In the last case one obtains for the radius a non-linear integro- 
differential equation which can be solved only numerically. 
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R&nun~Une transformation de similitude est employ&e pour resoudre le probl&me du transport de 
masse vers une goutte ou une bulle croissante lorsqu’on tient wmpte non settlement de la wmposante 
radiale de la vitesse (comme dans des articles anterieurs) mais au& de la wmposante tangentielle de la 
vitesse. La methode peut &re employee lorsque la croissance est due soit au transport de chaleur lui-m&e, 

soit a l’bcoulement dun liquide conduit par un capillaire. 

Zuaammenfassung-Mit Hilfe einer Ahnlichkeitsbetrachtung wird das Problem des Massentransports 
zu einem wachsenden Tropfen oder einer Blase gel&t, wobei nicht nur die radiale Komponente der 
Geschwindigkeit berilcksichtigt wird (wie in friiheren Arbeiten) sondern such die Tangential-Komponente. 
Die Methode kann angewendet werden, wenn das Wachstum aufgrund der Warmetibertragung selbst 

erfolgt oder wenn es aufgrund der Zustriimung von einer Fliissigkeit in einer Kapillaren erfolgt. 

AHHoTaqnSI-MeTon MOmeT 6bITb llCItOJIb30BaH B CJIyYae, KOrAa pOCT KatIJIA IIpOHCXOAE,T B 

pe3ynbTaTe TennOO6MeHa mli 38 cgeT Teqemm FKMAKOCTII, nonasaeMotl sepea Kanmump. 

Sanasa MacconepeHoca Kanm, yaemscrBam4ei4c~ B paslurepax, pemaeTcrr MeToaoM nono6- 

HbIX npeO6pa30BaHIdi. npI4 pemeHm KpOMe paAManbHos cocTaBnRm~et (CM. n@egbInyqlle 

CTaTbM) y’4HTbIBaeTCH II TaHl'eHUHaJIbHaR COCTaBJIRlo~aH. 


