Int. J. Heat Mass Transfer. Vol. 12, pp. 1249-1255. Pergamon Press 1969. Printed in Great Britain

FTempamas

Z 2

MASS OR HEAT TRANSFER WITH
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MASS TRANSFER IN THE CONTINUOUS PHASE TO A GROWING DROP
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Abstract—A similarity transformation is used for solving the problem of mass transfer to a growing drop

or bubble when not only the radial velocity component is taken into account (as in previous papers) but

also the tangential velocity component. The method may be used either when the growth is due to the heat
transfer itself or to the flow-rate of a liquid fed through a capillary.

NOMENCLATURE

radius of the drop;

constant defined by equation (13);
constant defined by equation (13);
concentration ;

diffusion coefficient ;

integration constant ;

quantity defined by equation (6);
liquid flow-rate through the capillary ;

e mass flux;

average mass flux with respect to
integration variable;
radial variable (spherical coordinate system);

Re, Reynolds number, = apU/yu;

integration variable;

time;

day/dt;

radial component of velocity ;

tangential component of velocity;

r—a;

integration constant

B/l

thickness of the diffusion boundary layer;

8%;

¥/, 1);

polar angle (spherical coordinate system);
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A,  quantity defined by equation (2);

4,  dynamic viscosity of the continuous phase;
i, dynamic viscosity of the discontinuous phase;
v,  kinematic viscosity of the continuous phase;
p,  the density of the continuous phase;

T, time ;

¢,  quantity defined by equation (7);

% quantity defined by equation (8);

w, constant selected equal to 2.

THERE exist numerous cases in which the interfacial area increases or decreases either as a conse-
quence of the heat and/or the mass transfer or during the transfer process. As examples, one may
mention the heat transfer to a growing bubble in boiling heat transfer and the mass transfer to a
drop in its forming period. In the first case the growth of the bubble is determined by the heat
transfer itself, while in the second by the flow-rate of the liquid fed through the capillary at the tip
of which the drop is formed. The first problem was treated by Forster and Zuber [1], by Plesset and
Zwick [2] and by Scriven [3]. The second by Ilkovic [4] and by Beek and Kramers [5]. The treat-
ments mentioned have taken into account only the radial velocity component. Recently Golub and
Krilov [6] have treated the problem of mass transfer in the continuous phase to a growing forming
drop by taking into account the tangential velocity component too. They have solved the hydro-
dynamic problem for small Reynolds numbers and have used a perturbation technique for solving
the mass-transfer problem. The aim of the present paper is to show that the last problem and other
similar problems may be solved by means of a method, developed in [7], based on a similarity
transformation. Besides its simplicity, the method does not require that the tangential velocity
component should be a small quantity as is required by the perturbation method.

BASIC EQUATIONS

Let us consider a growing drop which is formed at the tip of a capillary owing to the flow-rate m
of the liquid. The time dependence of the drop radius results from the equation

d

p a(%ntf) =m.
One obtains that
a(t) = A%, (1
where
3m\?
= _ . 2
A (41tp @

For the velocity components in the continuous phase the following expressions were obtained by
Golub and Krilov for small Reynolds numbers by means of a perturbation technique [6]

2
v, = U{j'(r, t)cos 0 + gz—} (3)
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vg = — U o(r,t)sinf @
where
da
V=% 3)
S A . Wy oyl

= y 4y? o :|
?=32F5pr [l +20+9) -1 -3+

+m5[1+5(1+3ﬂ)-7(1—%ﬁ)+... + 0
x=A"1 0t =(BRe)", B= % @®

Neglecting as usual a number of terms in the convective diffusion equation, one may write
oc dc  vedc %

attatra Do ©)
The change of variables
y=r—a (10)
T=t

allows to write equation (9) under the form

dc da\dc wydc 0%c
5‘;+(vr —&-)5-’-;50—_1)6_})2 (11)

The diffusion coefficient being small, the depth of penetration by diffusion is small too. The
region of interest for the concentration being near the interface where y < a one may approximate
the velocity distribution by means of the expressions containing only the first term of the series
expansion with respect to y/a.

In this manner one obtains

doc ¢

L -4 10 g ~3in 9% _
—a‘t+ ""3' [(At + Bt ) cos 8 t ] ay §(At + Bt )sme% = DW (12)
where
1 14
A= 32 + 5PA %y B= 152 + 3B 3% (13)

Equation (12) must be solved for the boundary conditions:
c=c¢ for t=0
c=¢ for y=0 (14)
c=cy for y— o0. ’
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THE SOLUTION OF EQUATION (12)
Since the coefficient multipying dc/dy is proportional to y, while that multiplying dc/é0 is in-
dependent on y it is possible to use the similarity variable n [7]

)y
"= 8.0y (13)
The similarity variable n allows to transform equation (12) into
d%c dec jJ186* 062
__ 2 -% -% —t 152 -1 -4 “Hgin H0— > =
anz +r’dn{2 o 2[(At7%* + Bt ™ %) cosf —t7 '] 6* —g(At™* + Bt )smeao} 0. (16)

Equation (16) is compatible with the assumption that the concentration ¢ depends only on 7.
Indeed, putting

106>, -3 S17 52 g g4 3y i 00
Eﬁ_g[(/‘t + Bt )COSO—t ]6 —g(At + Bt )Slneﬁ=wD (17)
where o is a proportionality constant, one obtains
d%c dc
— — =0
dn? + wn a (18)

For the constant w the value 2 will be selected.
The solution of equation (18) for the boundary conditions (14) has the form

€% _4 ——2—j'e_szds. (19)
0

The thickness § of the diffusion boundary layer is obtained by solving equation (17) for the
initial condition
=0 for t=0. (20)

The initial condition (20) is a consequence of the initial condition ¢ = ¢, for ¢t = 0. Indeed only
if 6 = 0 for t = 0, equation (16) satisfies the mentioned initial condition.

Denoting
£ =6?% 21
equation (17) may be written as
0
g-‘; — 4[(At™* + Bt H)cos 0 —t 7] e — §(At™* + Bt ¥)sin 6£ = 4D. (22)
The characteristic system which may be attached to equation (22) may be written as:
dt 3dé _ de (23)
1 sinO(At %+ Bt %) 4D + 4[(At™* + Bt %) cosf — t™ )¢

From the first equation one obtains

3In tang 34} 2Bt =a (24)



MASS OR HEAT TRANSFER WITH A CHANGE IN INTERFACIAL AREA—I 1253

As the second equation it will be used (25)
dt de
_—= . 2
1 4D + %[(At™* + Bt %) cos —t ] ¢ 23)

Because
0 0
— 2 — — —_—
1 — tan 7 1 —exp <2 In tan 2)

cos f = 9= — 0
1+ tanzi 1+ exp (21ntan§>

equation (24) allows to write
1 —expGa + 24t + $B7%)
= 2
o8 = expGa + 24r 7 + 3B Y) (26)

and equation (25) becomes

- 20 4 24t~ + 4Bt
1 —exp(§a + 24t7% + 3Bt )—t"]s—4D=0. @7

de 4
het i e §
it "3 [(At B exp G + 24t F + 4B )

by integration one obtains

t
4 _ a1l —expGa+24st +4Bs7Y)  _
- 4 s 3 ) _ g1
& (e"p {3 § [(AS B TGt 24 3B |

! p
4 ) a1 —expBu+ 2457 + 4Bs7Y) _] }] )
E - ] ¥ _ -t )
><< +4D§[exp{ 3)”:(As + Bs )l+exp(%a+2As"}+§Bs_*) s~ Ids ¢ |dp

(28)

The general solutions of equation (22) has the form
E = F(a).
The form of the function F may be determined by taking into account the initial condition (20).
In this manner it results that

0 p
4 _ _al—expa+24st +4BsY)  _
Fi = — 4D -5 A 3 B ¥ - 1
(@ j <exp{ 3][( s )1 +expGa+ 24s 3 +3Bs H) dy)d

and consequently that
t p
4 _ s 1 —tan?(6/2)exp (—2At™% —4Bt™* + 24s™% + §{Bs™%)
= 4D —-\{(4st + Bs™# 3 3
& 5(“"{ 3 S[( S B an? 02 exp (241 ¥ — $Bi-F 1 2457 1 3BsY)

-5 ’] ds})dp. (29)
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Performing the integrals from the exponent, one gets

(1 + tan® (6/2)]*
exp 2(At™% + Bt %)
t
o | ot exp 22Ap~* + $Bp H dp
{1+ tan? (62)exp [2A(p ' —t ) + 2B(p * —t H)}*
The integral from equation (30) can be carried out probably only numerically. Since the equation
used above for the velocity distribution are valid only for small values of the Reynolds number,

and therefore for small values of the quantities A and B, we shall perform the integration by expan-
sion in series of the integrand by means of a successive integration by parts. This procedure leads to

[1 + tan? (6/2)]* [3 L exp224t7¢ + 4Bt 7Y

exp 2Q2A4t™% + 2Bt~ [ 7 [1 + tan? (0/2)]*

[exp 224t + 4Bt H][1 - tan? (6/2)]
[1 + tan? (8/2))°

€=4Dt™*

(30)

e=4Dt™* + = (7At2 + SBt?)

~—(1(,A2t’} + 84Br? + s B*t%)

224t™* + $Bt™ 31 — 3 tan?(6/2) + tan*(6/2
[exp 2 i E[tan (0/21)1]6( £2) + tan* 0/2)] j (A% + BABpt + SBpY)

{1 — tan? (B2) exp 2AG™ — 1) + $Bp™* — ]}
{1+ tan? (02 exp [24(p * — ¢ ) + B(p * — ¢ P}

X {2 + 11 tanz—gexp RAp* -t H +4Bp * —t )]

x (Ap™* + Bp™¥)

+ 2tan4gexp 22A(p * —t ¥ +4B(p~t — 7)) }dp]. (31)

Neglecting the last integral as small compared to the other terms, one obtains

e =12Dt[1 + 34t *cos 0 + Bt tcos 0 — 4%t} — cos? ) + .. ] (32)
Since
dc 2 D
Ny=-D ; 33
= =o(§) - s >
one gets

7D\* Recos  56(,/3) Re* cos Reé? (% 2)
N,,=<—3—7E> (co—c,-)[l—3(2+5ﬂ)—§5— 2+ 3p) +6(2+5ﬂ)2 5—cos 0 +.‘:|.(34)

For the average value of the mass flux in the continuous phase there results

D Ré?
(3 t) (co — )l:l-f-m-i-] (35)

The first term in equation (35) represents Ilkovic’s approximation, while the others represent
correction to his result. The obtained equation is the same as the one obtained by Golub and
Krilov, but was deduced here by means of a more simple method. Besides, the present procedure



may be used also when the contribution of the tangential velocity component is important (large
Reynolds numbers), while the perturbation technique used by the mentioned authors is restricted
to small values of the tangential velocity. Unfortunately for the time being no velocity distribution
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for a growing drop at large Reynolds number exists.

It may be noted that the method may be extended to all cases in which the time dependence of
the radius is known ; it may be also applied to the cases in which the growth of the bubble is de-
termined by the heat transfer itself. In the last case one obtains for the radius a non-linear integro-

differential equation which can be solved only numerically.

AN DW=

~3
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Résumé—Une transformation de similitude est employée pour résoudre le probléme du transport de

masse vers une goutte ou une bulle croissante lorsqu’on tient compte non seulement de la composante

radiale de la vitesse (comme dans des articles antérieurs) mais aussi de la composante tangentielle de la

vitesse. La méthode peut étre employée lorsque la croissance est due soit au transport de chaleur lui-méme,
soit & I’écoulement d’un liquide conduit par un capillaire.

Zusammenfassung—Mit Hilfe einer Ahnlichkeitsbetrachtung wird das Problem des Massentransports
zu einem wachsenden Tropfen oder einer Blase gelost, wobei nicht nur die radiale Komponente der
Geschwindigkeit beriicksichtigt wird (wie in fritheren Arbeiten) sondern auch die Tangential-Komponente.
Die Methode kann angewendet werden, wenn das Wachstum aufgrund der Wiarmeiibertragung seibst
erfolgt oder wenn es aufgrund der Zustrémung von einer Fliissigkeit in einer Kapillaren erfolgt.

AnHoTamna—MeTox MoeT OHITH MCIOJAB30OBAH B CIAydae, KOTAA POCT KAMJIM MPOUCXOAUT B

pesynbTaTe Temyioo0MeHa MJIM 33 CUET TEUEHMA JKMKOCTH, NMOJABAEMON 4Yepes KANMIIAP.

3amaya MacCOMepeHOCca KAllJiM, yBeJWYMBAIOIIeCA B pasMepax, peiaeTcs METONOM NOj00-

HBEIX npeoGpasosanmit, IIpu pewleHuu KpoMe PajMaJIbHON COCTABIAILIEH (CM. NpemHLyIUe
CTaThbU) YYUTHIBAETCA U TAHPEHLMATbHAA COCTABJIAIMIANA.



